Add like
Add dislike
Add to saved papers

Protein Phosphatase 1α enhances renal aldosterone signaling via mineralocorticoid receptor stabilization.

Stimulation of the mineralocorticoid receptor (MR) by aldosterone controls several physiological parameters including blood pressure, inflammation or metabolism. We previously showed that MR turnover constitutes a crucial regulatory step in the responses of renal epithelial cells to aldosterone. Here, we identified Protein Phosphatase 1 alpha (PP1α), as a novel cytoplasmic binding partner of MR that promotes the receptor activity. The RT-PCR expression mapping of PP1α reveals a high expression in the kidney, particularly in the distal part of the nephron. At the molecular level, we demonstrate that PP1α inhibits the ubiquitin ligase Mdm2 by dephosphorylation, preventing its interaction with MR. This results in the accumulation of the receptor due to reduction of its proteasomal degradation and consequently a greater aldosterone-induced Na+ uptake by renal cells. Thus, our findings describe an original mechanism involving a phosphatase in the regulation of aldosterone signaling and provide new and important insights into the molecular mechanism underlying the MR turnover.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app