Add like
Add dislike
Add to saved papers

Direct expression of active human tissue inhibitors of metalloproteinases by periplasmic secretion in Escherichia coli.

BACKGROUND: As regulators of multifunctional metalloproteinases including MMP, ADAM and ADAMTS families, tissue inhibitors of metalloproteinases (TIMPs) play a pivotal role in extracellular matrix remodeling, which is involved in a wide variety of physiological processes. Since abnormal metalloproteinase activities are related to numerous diseases such as arthritis, cancer, atherosclerosis, and neurological disorders, TIMPs and their engineered mutants hold therapeutic potential and thus have been extensively studied. Traditional productions of functional TIMPs and their N-terminal inhibitory domains (N-TIMPs) rely on costly and time-consuming insect and mammalian cell systems, or tedious and inefficient refolding from denatured inclusion bodies. The later process is also associated with heterogeneous products and batch-to-batch variation.

RESULTS: In this study, we developed a simple approach to directly produce high yields of active TIMPs in the periplasmic space of Escherichia coli without refolding. Facilitated by disulfide isomerase (DsbC) co-expression in protease-deficient strain BL21 (DE3), N-TIMP-1/-2 and TIMP-2 which contain multiple disulfide bonds were produced without unwanted truncations. 0.2-1.4 mg purified monomeric TIMPs were typically yielded per liter of culture media. Periplasmically produced TIMPs exhibited expected inhibition potencies towards MMP-1/2/7/14, and were functional in competitive ELISA to elucidate the binding epitopes of MMP specific antibodies. In addition, prepared N-TIMPs were fully active in a cellular context, i.e. regulating cancer cell morphology and migration in 2D and 3D bioassays.

CONCLUSION: Periplasmic expression in E. coli is an excellent strategy to recombinantly produce active TIMPs and N-TIMPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app