Add like
Add dislike
Add to saved papers

In Situ Analysis of Oxygen Vacancies and Band Alignment in HfO2/TiN Structure for CMOS Applications.

The density of oxygen vacancies characterization in high-k/metal gate is significant for semiconductor device fabrication. In this work, a new approach was demonstrated to detect the density of oxygen vacancies by in situ x-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurement. Moreover, the band alignment of the structure with optical band gap measured by spectroscopic ellipsometry (SE) and valence band offset by UPS were reported. The specific areal density of oxygen vacancies in high-k dielectric of HfO2/TiN was obtained by fitting the experiment data to be 8.202 × 10(10)cm(- 2). This study would provide an effective approach to characterize the oxygen vacancies based defects which cause threshold voltage shifts and enormous gate leakage in modern MOSFET devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app