Add like
Add dislike
Add to saved papers

Origin and suppression of parasitic signals in Kagomé lattice hollow core fibers used for SRS microscopy and endoscopy.

Optics Letters 2017 May 2
Hollow core fibers are considered as promising candidates to deliver intense temporally overlapping picosecond pulses in applications such as stimulated Raman scattering (SRS) microscopy and endoscopy because of their inherent low nonlinearity compared to solid-core silica fibers. Here we demonstrate that, contrary to prior assumptions, parasitic signals are generated in Kagomé lattice hollow core fibers. We identify the origin of the parasitic signals as an interplay between the Kerr nonlinearity of air and frequency-dependent fiber losses. Importantly, we identify the special cases of experimental parameters that are free from parasitic signals, making hollow core fibers ideal candidates for noise-free SRS microscopy and endoscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app