Add like
Add dislike
Add to saved papers

Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication.

Optics Letters 2017 May 2
It is widely known that a diode-pumped solid-state laser (DPSSL) has very limited modulation bandwidth. Recently, we directed our attention toward the opportunities for directly modulating a DPSSL to generate high-speed green-light signals, with high power and superior beam quality, which are highly desirable in underwater wireless optical communication. The constraint imposed by the limited modulation bandwidth of a DPSSL is circumvented with the strategy of orthogonal frequency-division multiplexing and power loading. With a compact DPSSL dismantled from a low-cost laser pointer, we achieve net bit rates of 108.55 Mb/s for the 64 quadrature amplitude modulation (QAM) signal at a bit error rate (BER) of 6.42×10<sup>-4</sup> and 89.55 Mb/s for the 32 QAM signal at a BER of 4.81×10<sup>-4</sup>, respectively, over a 2 m underwater channel. When the underwater transmission distance is increased to 6 m, the BERs are still below the forward error correction (FEC) limit of 3.8×10<sup>-3</sup>.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app