Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Long-term intake of a high-protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats.

Intake of high-protein (HP) diets has increased over the last years, mainly due to their popularity for body weight control. Liver is the main organ handling ingested macronutrients and it is associated with the beginning of different pathologies. We aimed to deepen our knowledge on molecular pathways affected by long-term intake of an HP diet. We performed a transcriptome analysis on liver of rats chronically fed with a casein-rich HP diet and analyzed molecular parameters related to liver injury. Chronic increase in the dietary protein/carbohydrate ratio up-regulated processes related with amino acid uptake/metabolism and lipid synthesis, promoting a molecular environment indicative of hepatic triacylglycerol (TG) deposition. Moreover, changes in expression of genes involved in acid-base maintenance and oxidative stress indicate alterations in the pH balance due to the high acid load of the diet, which has been linked to liver/health damage. Up-regulation of immune-related genes was also observed. In concordance with changes at gene expression level, we observed increased liver TG content and increased serum markers of hepatic injury/inflammation (aspartate transaminase, C-reactive protein and TNF-alpha). Moreover, the HP diet strongly increased hepatic mRNA and protein levels of HSP90, a marker of liver injury. Thus, we show for the first time that long-term consumption of an HP diet, resulting in a high acid load, results in a hepatic transcriptome signature reflecting increased TG deposition and increased signs of health risk (increased inflammation, alterations in the acid-base equilibrium and oxidative stress). Persistence of this altered metabolic status could have unhealthy consequences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app