Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

On-chip ultrasonic manipulation of microparticles by using the flexural vibration of a glass substrate.

Ultrasonics 2017 August
As biotechnology develops, techniques for manipulating and separating small particles such as cells and DNA are required in the life sciences. This paper investigates on-chip manipulation of microparticles in small channels by using ultrasonic vibration. The chip consists of a rectangular glass substrate with a cross-shaped channel (cross-section: 2.0×2.0mm2 ) and four lead zirconate titanate transducers attached to the substrate's four corners. To efficiently generate the flexural vibration mode on the chip, we used finite element analysis to optimize the configurations of the glass substrate and transducers. Silicon carbide microparticles with an average diameter of 50μm were immersed in the channels, which were filled with ethanol. By applying an in-phase input voltage of 75V at 225kHz to the four transducers, a flexural vibration mode with a wavelength of 13mm was excited on the glass substrate, and this flexural vibration generated an acoustic standing wave in the channel. The particles could be trapped at the nodal lines of the standing wave. By controlling the driving phase difference between the two pairs of transducers, the vibrational distribution of the substrate could be moved along the channels so that the acoustic standing wave moved in the same direction. The trapped particles could be manipulated by the two-phase drive, and the transport direction could be switched at the junction of the channels orthogonally by changing the combination of the driving condition to four transducers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app