JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Simulated Force Quench Dynamics Shows GB1 Protein Is Not a Two State Folder.

Single molecule force spectroscopy is a useful technique for investigating mechanically induced protein unfolding and refolding under reduced forces by monitoring the end-to-end distance of the protein. The data is often interpreted via a "two-state" model based on the assumption that the end-to-end distance alone is a good reaction coordinate and the thermodynamic behavior is then ascribed to the free energy as a function of this one reaction coordinate. In this paper, we determined the free energy surface (PMF) of GB1 protein from atomistic simulations in explicit solvent under different applied forces as a function of two collective variables (the end-to-end-distance, and the fraction of native contacts ρ). The calculated 2-d free energy surfaces exhibited several distinct states, or basins, mostly visible along the ρ coordinate. Brownian dynamics (BD) simulations on the smoothed free energy surface show that the protein visits a metastable molten globule state and is thus a three state folder, not the two state folder inferred using the end-to-end distance as the sole reaction coordinate. This study lends support to recent experiments that suggest that GB1 is not a two-state folder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app