Add like
Add dislike
Add to saved papers

Synthesis of Trialkylhydroxylamines by Stepwise Reduction of O-Acyl N,N-Disubstituted Hydroxylamines: Substituent Effects on the Reduction of O-(1-Acyloxyalkyl)hydroxylamines and on the Conformational Dynamics of N-Alkoxypiperidines.

The influence of the electron-withdrawing azide group on the reduction of O-(1-acyloxy-ω-azido)hydroxylamines by triethylsilane in the presence of boron trifluoride etherate is studied and found to increase with increasing proximity to the reaction site, suggesting that the reaction proceeds by way of aminoxocarbenium ion intermediates. The ability to carry azides through the reaction sequence affords O-(ω-azidoalkyl-N,N-dialkylhydroxylamines thereby making such functionality available for use in click chemistry. A series of 4-substituted N-alkoxypiperidines were prepared and studied by variable temperature NMR spectroscopy leading to the conclusion that the rate-determining step in the stereomutation of such piperidines is the piperidine ring flip and not nitrogen inversion or rotation about the N-O bond. The process of N-O bond rotation only becomes rate determining when in the presence of pervasive steric hindrance as is the case with the N-alkoxy-2,2,6,6-tetramethylpiperidines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app