Add like
Add dislike
Add to saved papers

Predicting postnatal renal function of prenatally detected posterior urethral valves using fetal diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient determination.

OBJECTIVE: The objective of this study was to evaluate the accuracy of fetal diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) determination to predict postnatal renal function (nadir creatinine at 1 year and eGFR) of men with posterior urethral valves (PUV).

METHODS: Between 2003 and 2014, 11 MRI were performed on fetuses (between 28 and 32 weeks) in whom second trimester sonography suggested severe bilateral urinary tract anomalies, suspected of PUV.

RESULTS: The ADC of the 11 fetuses ranged from 1.3 to 2.86 mm2  s-1 (median = 1.79 mm2  s-1 , normal range for fetal kidney: 1.1-1.8). Two pregnancies with ADC > 2.6 mm2  s-1 were interrupted; the autopsy confirmed PUV and Potter syndrome. For the remaining nine babies, the follow-up was 5.4 years (0.8-10). Four children with abnormal ADC (1.8-2.3) had chronic kidney disease. The remaining five cases with normal nadir creatinine and eGFR had normal ADC. One case with unilateral elevated ADC had a poor ipsilateral renal function on dimercaptosuccinic acid scan.

CONCLUSION: Here, it seems that diffusion-weighted magnetic resonance imaging with ADC determination could be useful in accurately evaluating fetal kidneys in PUV and predicting renal function. It may be an additional, non-invasive method when biologic and sonographic findings are inconclusive, especially in the case of oligohydramnios. Further studies are needed to confirm our data. © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app