Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Syndecan-1 regulates dendritic cell migration in cutaneous hypersensitivity to haptens.

In human dendritic cells (DCs), we previously demonstrated in vitro that syndecan-1 (SDC1) is downregulated during maturation correlating with enhanced motility. We investigated the effects of SDC1 on DC migration in vivo during TNCB(2,4,6-trinitro-1-chlorobenzene)-induced cutaneous hypersensitivity reaction (CHS) in mice. We show that DC in SDC1-deficient mice migrated faster and at a higher rate to lymph nodes draining the hapten-painted skin. Adoptive transfer of SDC1-deficient hapten- and fluorochrome-labelled DC into wild-type (WT) mice led to increased and faster migration of DC to paracortical lymph nodes, and to a stronger CHS compared to WT DC. In SDC1-/- mice, CCR7 remains longer on the DC surface within the first 15-minutes maturation (after LPS-induced maturation). In addition, a time-dependent upregulation of CCL2, CCL3, VCAM1 and talin was found during maturation in SDC1-/- DC. However, no difference in T-cell-stimulating capacity of SDC1-deficient DC was found compared to WT DC. Mechanistically, SDC1-deficient DC showed enhanced migration towards CCL21 and CCL19. This may result from functional overexpression of CCR7 in SDC1-/- DC. Increased and accelerated migration of otherwise functionally intact SDC1-deficient DC leads to an exacerbated CHS. Based on our results, we conclude that SDC1 on DC negatively regulates DC migration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app