JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Enhanced Coupling Within Gonadotropic and Adrenocorticotropic Axes by Moderate Exercise in Healthy Men.

Context: Exercise elicits incompletely defined adaptations of metabolic and endocrine milieu, including the gonadotropic and corticotropic axes.

Objective: To quantify the impact of acute exercise on coordinate luteinizing hormone (LH) and testosterone (T) and adrenocorticotropic hormone (ACTH) and cortisol secretion in healthy men in relation to age.

Participants and Design: Prospectively randomized, within-subject crossover study in 23 men aged 19 to 77 years old. Subjects underwent rest and 30 minutes of mixed exercise at 65% of maximal aerobic capacity with 10-minute blood sampling between 7:00 am and 1:00 pm, 2 weeks apart.

Main Outcome Measures: Incremental changes in LH, T, ACTH, and cortisol concentrations, the feedforward and feedback strength between exercise and rest, quantified by approximate entropy (ApEn), and bihormonal synchrony, quantitated by cross-ApEn.

Results: Mean hourly exercise-minus-rest LH and ACTH increments increased from -0.055 ± 0.187 to 0.755 ± 0.245 IU/L (P = 0.003) and from 2.9 ± 2.2 to 71.2 ± 16.1 ng/L (P < 0.0001), respectively, during exercise. T and cortisol increments increased concurrently from -9.6 ± 16.7 to 47.6 ± 17.1 ng/dL (P < 0.0001) and 0.45 ± 0.76 to 7.27 ± 0.64 µg/dL (P < 0.0001), respectively. During exercise, feedforward and feedback LH-T and ACTH-cortisol cross-ApEn decreased markedly quantifying enhanced hormonal coupling.

Conclusions: Acute moderate mixed exercise in healthy men rapidly enhances feedforward LH-T and ACTH-cortisol coordination and reciprocal feedback within the gonadotropic and corticotropic axes. In principle, enhancement of both LH-T and ACTH-cortisol secretory synchrony by exercise could reflect augmented coupling between brain-testicular and brain-adrenal neural outflow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app