Add like
Add dislike
Add to saved papers

Kaolin-based hemostatic dressing improves hemorrhage control from a penetrating inferior vena cava injury in coagulopathic swine.

BACKGROUND: Retrohepatic inferior vena cava (RIVC) injuries are often lethal due to challenges in obtaining hemorrhage control. We hypothesized that packing with a new kaolin-based hemostatic dressing (Control+; Z-Medica, Wallingford, CT) would improve hemorrhage control from a penetrating RIVC injury compared with packing with standard laparotomy sponges alone.

METHODS: Twelve male Yorkshire pigs received a 25% exchange transfusion of blood for refrigerated normal saline to induce a hypothermic coagulopathy. A laparotomy was performed and a standardized 1.5 cm injury to the RIVC was created which was followed by temporary abdominal closure and a period of uncontrolled hemorrhage. When the mean arterial pressure reached 70% of baseline, demonstrating hemorrhagic shock, the abdomen was re-entered, and the injury was treated with perihepatic packing using standard laparotomy sponges (L; n = 6) or a new kaolin-based hemostatic dressing (K; n = 6). Animals were then resuscitated for 6 hours with crystalloid solution. The two groups were compared using the Wilcoxon rank sum test and Fisher exact test. A p value of 0.05 or less was considered statistically significant.

RESULTS: There was no difference in the animal's temperature, heart rate, mean arterial pressure, cardiac output, and blood loss at baseline or before packing was performed (all p > 0.05). In the laparotomy sponge group, five of six pigs survived the entire study period, whereas all six pigs treated with kaolin-based D2 hemostatic dressings survived. Importantly, there was significantly less blood loss after packing with the new hemostatic kaolin-based dressing compared with packing with laparotomy sponge (651 ± 180 mL vs. 1073 ± 342 mL; p ≤ 0.05).

CONCLUSION: These results demonstrate that the use of this new hemostatic kaolin-based dressing improved hemorrhage control and significantly decreased blood loss in this penetrating RIVC model.

LEVEL OF EVIDENCE: This is basic science research based on a large animal model, level V.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app