Add like
Add dislike
Add to saved papers

Reversible Supracolloidal Self-Assembly of Cobalt Nanoparticles to Hollow Capsids and Their Superstructures.

Angewandte Chemie 2017 June 2
The synthesis and spontaneous, reversible supracolloidal hydrogen bond-driven self-assembly of cobalt nanoparticles (CoNPs) into hollow shell-like capsids and their directed assembly to higher order superstructures is presented. CoNPs and capsids form in one step upon mixing dicobalt octacarbonyl (Co2 CO8 ) and p-aminobenzoic acid (pABA) in 1,2-dichlorobenzene using heating-up synthesis without additional catalysts or stabilizers. This leads to pABA capped CoNPs (core ca. 5 nm) with a narrow size distribution. They spontaneously assemble into tunable spherical capsids (d≈50-200 nm) with a few-layered shells, as driven by inter-nanoparticle hydrogen bonds thus warranting supracolloidal self-assembly. The capsids can be reversibly disassembled and reassembled by controlling the hydrogen bonds upon heating or solvent exchanges. The superparamagnetic nature of CoNPs allows magnetic-field-directed self-assembly of capsids to capsid chains due to an interplay of induced dipoles and inter-capsid hydrogen bonds. Finally, self-assembly on air-water interface furnishes lightweight colloidal framework films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app