Add like
Add dislike
Add to saved papers

The effects and the toxicity increases caused by bicarbonate, chloride, and other water components during the UV/TiO 2 degradation of oxazaphosphorine drugs.

The influences of HCO3 - , Cl- , and other components on the UV/TiO2 degradation of the antineoplastic agents ifosfamide (IFO) and cyclophosphamide (CP) were studied in this work. The results indicated that the presence of HCO3 - , Cl- , NO3 - , and SO4 2- in water bodies resulted in lower degradation efficiencies. The half-lives of IFO and CP were 1.2 and 1.1 min and increased 2.3-7.3 and 3.2-6.3 times, respectively, in the presence of the four anions (initial compound concentration = 100 μg/L, TiO2 loading =100 mg/L, anion concentration = 1000 mg/L, and pH = 8). Although the presence of HCO3 - in the UV/TiO2 /HCO3 - system resulted in a lower degradation rate and less byproduct formation for IFO and CP, two newly identified byproducts, P11 (M.W. = 197) and P12 (M.W. = 101), were formed and detected, suggesting that additional pathways occurred during the reaction of •CO3 - in the system. The results also showed that •CO3 - likely induces a preferred ketonization pathway. Besides the inorganic anions HCO3 - , Cl- , NO3 - , and SO4 2- , the existence of dissolved organic matter in the water has a significant effect and inhibits CP degradation. Toxicity tests showed that higher toxicity occurred in the presence of HCO3 - or Cl- during UV/TiO2 treatment and within 6 h of reaction time, implying that the effects of these two anions should not be ignored when photocatalytic treatment is applied to treat real wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app