Add like
Add dislike
Add to saved papers

An optically-gated AuNP-DNA protonic transistor.

Nanoscale 2017 June 2
Bio-interface transistors, which manipulate the transportation of ions (i.e. protons), play an important role in bridging physical devices with biological functionalities, because electrical signals are carried by ions/protons in biological systems. All available ionic transistors use electrostatic gates to tune the ionic carrier density, which requires complicated interconnect wires. In contrast, an optical gate, which offers the advantages of remote control as well as multiple light wavelength selections, has never been explored for ionic devices. Here, we demonstrate a light-gated protonic transistor fabricated from an Au nanoparticle and DNA (AuNP-DNA) hybrid membrane. The device can be turned on and off completely by using light, with a high on/off current ratio of up to 2 orders of magnitude. Moreover, the device only responds to specific light wavelengths due to the plasmonic effect from the AuNPs, which enables the capability of wavelength selectivity. Our results open up new avenues for exploring remotely controlled ionic circuits, in vivo protonic switches, and other biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app