Add like
Add dislike
Add to saved papers

Defect-promoted photo-electrochemical performance enhancement of orange-luminescent ZnO nanorod-arrays.

Intentionally defect-rich zinc oxide (ZnO) nanorod-arrays were grown from solution by carefully adjusting the concentration ratio of the growth-precursors used followed by various post-deposition thermal treatments. Post-deposition rapid thermal annealing (RTA) at moderate temperatures (350 °C-550 °C) and in various atmospheres was applied to vary the defect composition of the grown nanorod-arrays. It is demonstrated that, intense, defect-related orange emission occurs solely upon RTA around 450 °C and is essentially independent of the atmosphere used. Extensive materials characterization was carried out in order to evaluate the origin of the orange-luminescent defects and what influence they have on the ZnO material properties. It is concluded that the oxygen vacancy-zinc interstitial defect complex (VO -Zni ) is responsible for the orange luminescence in the prepared materials. A kinetic formation mechanism of the VO -Zni complex dependent on the RTA temperature is proposed and shown to be in accordance with the experimental findings. Furthermore it is shown that this bulk deep-level defect could act as a trap state for photo-generated electrons prolonging the charge carrier lifetime of photo-generated holes and therefore improving the charge carrier separation in the material. As a result the photo-current density under simulated sunlight is found to increase by almost 150% over as-grown samples. The potential use of this defective material in applications such as solar water splitting is outlined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app