Add like
Add dislike
Add to saved papers

Temporal Dilation of Animal Cardiac Recordings Registered to Human Torso Geometries.

Recordings of cardiac surface potentials from animal hearts can be mapped into human torso and used as source potentials for torso simulation. However, geometric registration of the heart can introduce changes in the effective conduction velocity due to change in relative positions of the recording sites. We developed a time dilation technique to ensure that adjusted cardiac potential recordings had physiological timing similar to human recordings after registration and corrected for conduction velocity. Temporal dilation was performed both linearly and nonlinearly using two scaling techniques that reflect either global or local deformations. Linear temporal dilation of canine epicardial potential recordings using global scaling could be used to generate electrograms physiologically similar to humans in terms of conduction velocity, activation recovery interval, total activation time, and activation maps. Epicardial potential mapping of such dilated canine recordings thus allows the investigation of human-like arrhythmias and other disease states that can not be readily induced or measured in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app