Add like
Add dislike
Add to saved papers

Magnetic circular dichroism studies of iron(ii) binding to human calprotectin.

Chemical Science 2017 Februrary 2
Calprotectin (CP) is an abundant metal-chelating protein involved in host defense, and the ability of human CP to bind Fe(ii) in a calcium-dependent manner was recently discovered. In the present study, near-infrared magnetic circular dichroism spectroscopy is employed to investigate the nature of Fe(ii) coordination at the two transition-metal-binding sites of CP that are a His3Asp motif (site 1) and a His6 motif (site 2). Upon the addition of sub-stoichiometric Fe(ii), a six-coordinate (6C) Fe(ii) center associated with site 2 is preferentially formed in the presence of excess Ca(ii). This site exhibits an exceptionally large ligand field (10Dq = 11 045 cm(-1)) for a non-heme Fe(ii) protein. Analysis of CP variants lacking residues of the His6 motif supports that CP coordinates Fe(ii) at site 2 by employing six His ligands. In the presence of greater than one equiv. of Fe(ii) or upon mutation of the His6 motif, the metal ion also binds at site 1 of CP to form a five-coordinate (5C) Fe(ii)-His3Asp motif that was previously unidentified in this system. Notably, the introduction of His-to-Ala mutations at the His6 motif results in a mixture of 6C (site 2) and 5C (site 1) signals in the presence of sub-stoichiometric Fe(ii). These results are consistent with a reduced Fe(ii)-binding affinity of site 2 as more weakly coordinating water-derived ligands complete the 6C site. In the absence of Ca(ii), both sites 1 and 2 are occupied upon addition of sub-stoichiometric Fe(ii), and a stronger ligand field is observed for the 5C site. These spectroscopic studies provide further evaluation of a unique non-heme Fe(ii)-His6 site for metalloproteins and support the notion that Ca(ii) ions influence the Fe(ii)-binding properties of CP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app