Add like
Add dislike
Add to saved papers

Upregulation of OLR1 and IL17A genes and their association with blood glucose and lipid levels in femoropopliteal artery disease.

Oxidized low-density lipoprotein receptor 1 (OLR1) and interleukin 17A (IL17A) have pro-inflammatory roles in the development of cardiovascular disorders. The present study evaluated the association of OLR1 and IL17A and their polymorphisms with the development of femoropopliteal (FP) artery disease. The mRNA expression of OLR1 and IL17A in peripheral blood mononuclear cells as well as the frequency of OLR1 rs11053646 and IL17A rs8193037 and rs3819025 polymorphisms were assessed by polymerase chain reaction in 70 patients with FP artery disease and 80 age-matched disease-free controls. Furthermore, the levels of plasma cytokines were assessed by multiplex immunoassay. OLR1 and IL17A mRNA expression was significantly higher in patients with FP artery disease compared with that in controls (P<0.001). No significant difference was observed in the genotypic frequencies of OLR1 rs11053646 (P=0.87) or in IL17A rs8193037 and rs3819025 (P=0.80 and 0.92, respectively) polymorphisms between patients with FP artery disease and controls. Plasma IL4, -6, -10, -22, -31 and -33 as well as soluble cluster of differentiation 40 ligand and tumor necrosis factor-α levels were significantly increased among FP artery disease patients compared with controls (P<0.05). Furthermore, OLR1 expression was positively correlated with triglyceride (r=0.463, P<0.001), low-density lipoprotein cholesterol (r=0.507, P<0.001) and total cholesterol levels (r=0.357, P=0.006) in patients with FP artery disease. To the best of our knowledge, the present study was the first to identify an association between OLR1 and IL17A genes and FP artery disease. OLR1 and IL17A mRNA transcripts may be associated with blood lipid parameters and with the development of FP artery disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app