Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Post-Surgery Glioma Growth Modeling from Magnetic Resonance Images for Patients with Treatment.

Scientific Reports 2017 April 28
Reaction diffusion is the most common growth modelling methodology due to its simplicity and consistency with the biological tumor growth process. However, current extensions of the reaction diffusion model lack one or more of the following: efficient inclusion of treatments' effects, taking into account the viscoelasticity of brain tissues, and guaranteed stability of the numerical solution. We propose a new model to overcome the aforementioned drawbacks. Guided by directional information derived from diffusion tensor imaging, our model relates tissue heterogeneity with the absorption of the chemotherapy, adopts the linear-quadratic term to simulate the radiotherapy effect, employs Maxwell-Weichert model to incorporate brain viscoelasticity, and ensures the stability of the numerical solution. The performance is verified through experiments on synthetic and real MR images. Experiments on 9 MR datasets of patients with low grade gliomas undergoing surgery with different treatment regimens are carried out and validated using Jaccard score and Dice coefficient. The growth simulation accuracies of the proposed model are in ranges of [0.673 0.822] and [0.805 0.902] for Jaccard scores and Dice coefficients, respectively. The accuracies decrease up to 4% and 2.4% when ignoring treatment effects and the tensor information, while brain viscoelasticity has no significant impact on the accuracies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app