Add like
Add dislike
Add to saved papers

Fabrication of TiO2 Nanosheet Aarrays/Graphene/Cu2O Composite Structure for Enhanced Photocatalytic Activities.

TiO2 NSAs/graphene/Cu2O was fabricated on the carbon fiber to use as photocastalysts by coating Cu2O on the graphene (G) decorated TiO2 nanosheet arrays (NSAs). The research focus on constructing the composite structure and investigating the reason to enhance the photocatalytic ability. The morphological, structural, and photocatalytic properties of the as-synthesized products were characterized. The experimental results indicate that the better photocatalytic performance is ascribed to the following reasons. First, the TiO2 NSAs/graphene/Cu2O composite structure fabricated on the carbon cloth can form a 3D structure which can provide a higher specific surface area and enhance the light absorption. Second, the graphene as an electron sink can accept the photoelectrons from the photoexcited Cu2O which will reduce the recombination. Third, the TiO2 nanosheet can provide more favorable carrier transportation channel which can reduce the recombination of carriers. Finally, the Cu2O can extend the light absorption range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app