Add like
Add dislike
Add to saved papers

Cytoprotective Effect of Heat Shock Protein 27 Against Lipopolysaccharide-Induced Apoptosis of Renal Epithelial HK-2 Cells.

BACKGROUND: In response to various stimuli, heat shock protein 27 (Hsp27) functions as an anti-apoptotic or/and anti-inflammatory factor which confers a survival advantage to cells. This study was aimed to explore whether Hsp27 also has a cytoprotective role in human renal tubular epithelial cells, and to evaluate its potential in treating septic acute kidney injury (septic AKI).

METHODS: HK-2 cells were subjected to different concentrations (0-10 µg/mL) of lipopolysaccharide (LPS) for various times (0-24 h) to establish a septic AKI model in vitro. Before LPS administration, HK-2 cells were transfected either with vectors or siRNA against Hsp27, and the changes in cell viability and apoptotic cells rate were assessed using CCK-8 and flow cytometry. The expression changes in apoptosis-related proteins, proinflammatory cytokines and chemokine, as well as main factors in NF-κB and JNK pathways were mainly determined by Western blotting. Besides, the relationship between Hsp27 and Bcl-2 was detected by co-immunoprecipitation.

RESULTS: LPS remarkably damaged HK-2 cells by reduction of cell viability, induction of apoptosis, and stimulation of proinflammatory cytokines and chemokine release. Hsp27 overexpression significantly impaired LPS-induced damage in HK-2 cells. Hsp27 overexpression couldn't alter the mRNA level of Bcl-2, but could interact with Bcl-2 at an endogenous level. Both NF-κB and JNK pathways were activated by LPS, while were blocked in Hsp27-overexpressing cells.

CONCLUSION: Hsp27 overexpression conferred a survival advantage to LPS-injured HK-2 cells by controlling cell viability, apoptosis and inflammation, possibly via interaction with Bcl-2 and modulation of NF-κB and JNK pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app