Add like
Add dislike
Add to saved papers

Automated detection of pathologic white matter alterations in Alzheimer's disease using combined diffusivity and kurtosis method.

Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) are important diffusion MRI techniques for detecting microstructure abnormities in diseases such as Alzheimer's. The advantages of DKI over DTI have been reported generally; however, the indistinct relationship between diffusivity and kurtosis has not been clearly revealed in clinical settings. In this study, we hypothesize that the combination of diffusivity and kurtosis in DKI improves the capacity of DKI to detect Alzheimer's disease compared with diffusivity or kurtosis alone. Specifically, a support vector machine-based approach was applied to combine diffusivity and kurtosis and to compare different indices datasets. Strict assessments were conducted to ensure the reliability of all classifiers. Then, data from the optimized classifiers were used to detect abnormalities. With the combination, high accuracy performances of 96.23% were obtained in 53 subjects, including 27 Alzheimer's patients. More highly scored abnormal regions were selected by the combination than alone. The results revealed that more precise diffusivity and complementary kurtosis mainly contributed to the high performance of the combination in DKI. This study provides further understanding of DKI and the relationship between diffusivity and kurtosis in pathologic white matter alterations in Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app