Add like
Add dislike
Add to saved papers

Testing and application of simple semi-analytical models for soil temperature estimation and prediction in environmental assessments.

The ability of various semi-analytical models to predict soil temperature profiles in an experimental plot during a 16-year monitoring study for soil depths up to 120 cm is evaluated. The models are developed from an analytical model by replacing the steady-state soil temperature with easily obtained hourly and daily average temperature values. Such values include the hourly air temperature, the daily average air temperature, the hourly soil temperature of selected soil depths from three daily observations, the daily average of the soil temperature profile and the hourly soil temperature for the bottom depth. The performance evaluation results show that, in principle, all models exhibit high correlation (R2 values in the range 0.85-0.97), indicating a very good agreement between measured and predicted values. In addition, error statistics reveal that the best performance in terms of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) is the model based on the daily average of the soil temperature profile with MAE values in the range of 0-0.4°C and RMSE values in the range of 0.1-1.5°C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app