COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparison of Power Versus Manual Injection in Bolus Shape and Image Quality on Contrast-Enhanced Magnetic Resonance Angiography: An Experimental Study in a Swine Model.

OBJECTIVE: The aim of this study was to compare power versus manual injection in bolus shape and image quality on contrast-enhanced magnetic resonance angiography (CE-MRA).

MATERIALS AND METHODS: Three types of CE-MRA (head-neck 3-dimensional [3D] MRA with a test-bolus technique, thoracic-abdominal 3D MRA with a bolus-tracking technique, and thoracic-abdominal time-resolved 4-dimensional [4D] MRA) were performed after power and manual injection of gadobutrol (0.1 mmol/kg) at 2 mL/s in 12 pigs (6 sets of power and manual injections for each type of CE-MRA). For the quantitative analysis, the signal-to-noise ratio was measured on ascending aorta, descending aorta, brachiocephalic trunk, common carotid artery, and external carotid artery on the 6 sets of head-neck 3D MRA, and on ascending aorta, descending aorta, brachiocephalic trunk, abdominal aorta, celiac trunk, and renal artery on the 6 sets of thoracic-abdominal 3D MRA. Bolus shapes were evaluated on the 6 sets each of test-bolus scans and 4D MRA. For the qualitative analysis, arterial enhancement, superimposition of nontargeted enhancement, and overall image quality were evaluated on 3D MRA. Visibility of bolus transition was assessed on 4D MRA. Intraindividual comparison between power and manual injection was made by paired t test, Wilcoxon rank sum test, and analysis of variance by ranks.

RESULTS: Signal-to-noise ratio on 3D MRA was statistically higher with power injection than with manual injection (P < 0.001). Bolus shapes (test-bolus, 4D MRA) were represented by a characteristic standard bolus curve (sharp first-pass peak followed by a gentle recirculation peak) in all the 12 scans with power injection, but only in 1 of the 12 scans with manual injection. Standard deviations of time-to-peak enhancement were smaller in power injection than in manual injection. Qualitatively, although both injection methods achieved diagnostic quality on 3D MRA, power injection exhibited significantly higher image quality than manual injection (P = 0.001) due to significantly higher arterial enhancement (P = 0.031) and less superimposition of nontargeted enhancement (P = 0.001). Visibility of bolus transition on 4D MRA was significantly better with power injection than with manual injection (P = 0.031).

CONCLUSIONS: Compared with manual injection, power injection provides more standardized bolus shapes and higher image quality due to higher arterial enhancement and less superimposition of nontargeted vessels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app