JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Methods for the Self-integration of Megamolecular Biopolymers on the Drying Air-LC Interface.

Living organisms that use water are always prone to drying in the environment. Their activities are driven by biopolymer-based micro- and macro-structures, as seen in the cases of moving water in vascular bundles and moisturizing water in skin layers. In this study, we developed a method for assessing the effect of aqueous liquid crystalline (LC) solutions composed of biopolymers on drying. As LC biopolymers have megamolecular weight, we chose to study polysaccharides, cytoskeletal proteins, and DNA. The observation of biopolymer solutions during drying under polarized light reveals milliscale self-integration starting from the unstable air-LC interface. The dynamics of the aqueous LC biopolymer solutions can be monitored by evaporating water from a one-side-open cell. By analyzing the images taken using cross-polarized light, it is possible to recognize the spatio-temporal changes in the orientational order parameter. This method can be useful for the characterization of not only artificial materials in various fields, but also natural living tissues. We believe that it will provide an evaluation method for soft materials in the biomedical and environmental fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app