Add like
Add dislike
Add to saved papers

Plasma matrix metalloproteinases are associated with incident cardiovascular disease and all-cause mortality in patients with type 1 diabetes: a 12-year follow-up study.

BACKGROUND: Altered regulation of extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) may contribute to vascular complications in type 1 diabetes. We investigated associations between plasma MMP-1, -2, -3, -9, -10 and TIMP-1, and cardiovascular events and all-cause mortality in type 1 diabetic patients.

METHODS: We prospectively followed 337 type 1 diabetic patients [mean age 41.4 years (9.6), 39% female], 170 with and 167 without diabetic nephropathy, with median follow-up of 12.3 years. Survival analyses were applied to investigate differences in plasma MMP-1, -2, -3, -9, -10, and TIMP-1-levels in patients with and without a cardiovascular event and in those who died vs survivors. All analyses were adjusted for age, sex, duration of diabetes, HbA1c, nephropathy and for other conventional cardiovascular risk factors.

RESULTS: After adjustment for potential confounders, higher MMP-2 plasma levels were significantly associated with higher incidence of cardiovascular events [HR 1.49 (95% CI 1.11; 1.99)], and higher plasma levels of MMP-1 [1.38 (1.07; 1.78)], MMP-2 [1.60 (1.19; 2.15)] and MMP-3 [1.39 (1.05; 1.85)] were associated with all-cause mortality. All associations were independent of low-grade inflammation and endothelial dysfunction as estimated by plasma markers. Associations between MMP-2 and cardiovascular events and between MMP-3 and mortality were attenuated after further adjustment for eGFR and changes in eGFR.

CONCLUSIONS: Higher levels of MMP-2 are associated with CVD and higher MMP-1, -2 and -3 with all-cause mortality. In addition, associations between MMP-2 and CVD, and MMP-3 and mortality were attenuated after adjustment for eGFR while both MMPs were associated with eGFR decline, indicating a possible mediating role of eGFR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app