JOURNAL ARTICLE
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Directional Force Originating from ATP Hydrolysis Drives the GroEL Conformational Change.

Biophysical Journal 2017 April 26
Protein functional mechanisms usually require conformational changes, and often there are known structures for the different conformational states. However, usually neither the origin of the driving force nor the underlying pathways for these conformational transitions is known. Exothermic chemical reactions may be an important source of forces that drive conformational changes. Here we investigate this type of force originating from ATP hydrolysis in the chaperonin GroEL, by applying forces originating from the chemical reaction. Specifically, we apply directed forces to drive the GroEL conformational changes and learn that there is a highly specific direction for applied forces to drive the closed form to the open form. For this purpose, we utilize coarse-grained elastic network models. Principal component analysis on 38 GroEL experimental structures yields the most important motions, and these are used in structural interpolation for the construction of a coarse-grained free energy landscape. In addition, we investigate a more random application of forces with a Monte Carlo method and demonstrate pathways for the closed-open conformational transition in both directions by computing trajectories that are shown upon the free energy landscape. Initial root mean square deviation (RMSD) between the open and closed forms of the subunit is 14.7 Å and final forms from our simulations reach an average RMSD of 3.6 Å from the target forms, closely matching the level of resolution of the coarse-grained model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app