Add like
Add dislike
Add to saved papers

CXCR4-Targeted and Redox Responsive Dextrin Nanogel for Metastatic Breast Cancer Therapy.

Biomacromolecules 2017 June 13
The unsatisfied results of cancer therapy are caused by many issues and metastasis of cancer cells is one of the major challenge. It has been reported that inhibiting the SDF1/CXCR4 interaction can significantly reduce the metastasis of breast cancer cells to regional lymph nodes and lung. Herein, a nanogel system equipped with the FDA-approved CXCR4 antagonist AMD3100 was developed and evaluated for its combined antimetastatic and tumor targeting effects. Briefly, a bioreducible cross-linked dextrin nanogel (DNG) coated with AMD3100 was designed to possess multiple functions, including CXCR4 chemokine targeting, inhibition of tumor metastasis, and reduction-responsive intracellular release of doxorubicin (DOX) to reduce the cells proliferation. The in vitro results confirmed that the DOX-loaded AMD3100-coated dextrin nanogel (DOX-AMD-DNG) was more effectively taken up by 4T1 breast cancer cells than DOX-DNG and was significantly more cytotoxic to 4T1 cells than DOX-DNG. In biodistribution studies, the stronger fluorescence intensity of Cy7-AMD-DNG than Cy7-DNG further confirmed that AMD3100 mediated tumor targeting in vivo. AMD3100-coated DOX-DNG also exhibited a distinct antimetastatic effect and CXCR4 antagonistic activity by inhibiting CXCR4-mediated cell invasion in 4T1 and U2OS cells. Moreover, DOX-AMD-DNG displayed superior anticancer activity and antimetastatic effects in orthotopic breast cancer-bearing Balb/C mice. In summary, the multifunctional DOX-AMD-DNG can effectively target the tumor site and dually impede cancer progression and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app