Add like
Add dislike
Add to saved papers

CB1 receptors down-regulate a cAMP/Epac2/PLC pathway to silence the nerve terminals of cerebellar granule cells.

Cannabinoid receptors mediate short-term retrograde inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at excitatory synapses. The responses of individual nerve terminals in VGLUT1-pHluorin transfected cerebellar granule cells to cannabinoids have shown that prolonged activation of cannabinoid type 1 receptors (CB1Rs) silences a subpopulation of previously active synaptic boutons. Adopting a combined pharmacological and genetic approach to study the molecular mechanisms of CB1R-induced silencing, we found that adenylyl cyclase inhibition decreases cAMP levels while it increases the number of silent synaptic boutons and occludes the induction of further silencing by the cannabinoid agonist HU-210. Guanine nucleotide exchange proteins directly activated by cAMP (Epac proteins) mediate some of the presynaptic effects of cAMP in the potentiation of synaptic transmission. ESI05, a selective Epac2 inhibitor, and U-73122, the specific inhibitor of phospholipase C (PLC), both augment the number of silent synaptic boutons. Moreover, they abolish the capacity of the Epac activator, 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate, to prevent HU-210-induced silencing consistent with PLC signaling lying downstream of Epac2 proteins. Furthermore, Rab3-interacting molecule (RIM)1α KO cells have many more basally silent synaptic boutons (12.9 ± 3.5%) than wild-type cells (1.1 ± 0.5%). HU-210 induced further silencing in these mutant cells, although 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cyclic monophosphate monosodium hydrate only awoke the HU-210-induced silence and not the basally silent synaptic boutons. This behavior can be rescued by expressing RIM1α in RIM1α KO cells, these cells behaving very much like wild-type cells. These findings support the hypothesis that a cAMP/Epac/PLC signaling pathway targeting the release machinery appears to mediate cannabinoid-induced presynaptic silencing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app