Add like
Add dislike
Add to saved papers

Distinguishing Quinacridone Pigments via Terahertz Spectroscopy: Absorption Experiments and Solid-State Density Functional Theory Simulations.

Through a combined experimental and theoretical investigation we determine that the fundamental modes of three quinacridones fall in the terahertz spectral range (1-10 THz, ∼30-300 cm-1 ). In each spectrum the terahertz resonances correspond to wagging, rocking, or twisting of the quinacridone rings, with the most intense absorption being an in-plane rocking vibration of the carbonyl oxygens. In spite of these spectral similarities, we demonstrate that terahertz measurements readily differentiate β-quinacridone, γ-quinacridone, and 2,9-dimethylquinacridone. The spectrum of β-quinacridone has a group of closely spaced modes at ∼4 THz, whereas in contrast the spectrum of γ-quinacridone displays a widely spaced series of modes spread over the range ∼1-5 THz. Both of these have the strongest mode at ∼9 THz, whereas in contrast 2,9-dimethylquinacridone exhibits the strongest mode at ∼7 THz. Because quinacridones are the basis of widely used synthetic pigments of relatively recent origin, our findings offer promising applications in the identification and dating of modern art.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app