COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Does postexercise modelled capillary blood flow accurately reflect cardiovascular effects by different exercise intensities?

Blood flow (BF) in exercising muscles is an important factor for exercise capacity. Recently, a non-invasive method to estimate capillary BF (Qcap ) was introduced. Using this method, the Fick principle is re-arranged by using relative differences in deoxygenated haemoglobin (ΔHHb) as a surrogate for arteriovenous O2 difference and pulmonary oxygen uptake (VO2 ) instead of muscular oxygen uptake. The aim of this study was to examine (I) the relationship between Qcap and exercise intensity during and following exercise, and (II) to critically reflect the Qcap approach. Seventeen male subjects completed six bouts of cycling exercise with different exercise intensities (40-90% peak oxygen uptake, VO2peak ) in randomized order. VO2 and ΔHHb were monitored continuously during the trail. Qcap was modelled bi-exponentially, and mean response time (MRT) was calculated during recovery as well as the dissociation of modelled VO2 and Qcap recovery kinetics (MRT/τVO2 ). End-exercise Qcap increased continuously with exercise intensity. This also applied to MRT. Postexercise MRT/τVO2 increased from 40 to 60% VO2peak but remained stable thereafter. The results show that Qcap response to exercise is linearly related to exercise intensity. This is presumably due to vasoactive factors like shear-stress or endothelial-mediated vasodilation. MRT/τVO2 shows that postexercise Qcap is elevated for a longer period than VO2 , which is representative for metabolic demand following exercise ≥70% VO2peak . This is a hint for prolonged local vasodilation. According to previous studies, Qcap could not be modelled properly in some cases, which is a limitation to the method and therefore has to be interpreted with caution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app