Add like
Add dislike
Add to saved papers

Constructing longitudinal disease progression curves using sparse, short-term individual data with an application to Alzheimer's disease.

In epidemiology, cohort studies utilised to monitor and assess disease status and progression often result in short-term and sparse follow-up data. Thus, gaining an understanding of the full-term disease pathogenesis can be difficult, requiring shorter-term data from many individuals to be collated. We investigate and evaluate methods to construct and quantify the underlying long-term longitudinal trajectories for disease markers using short-term follow-up data, specifically applied to Alzheimer's disease. We generate individuals' follow-up data to investigate approaches to this problem adopting a four-step modelling approach that (i) determines individual slopes and anchor points for their short-term trajectory, (ii) fits polynomials to these slopes and anchor points, (iii) integrates the reciprocated polynomials and (iv) inverts the resulting curve providing an estimate of the underlying longitudinal trajectory. To alleviate the potential problem of roots of polynomials falling into the region over which we integrate, we propose the use of non-negative polynomials in Step 2. We demonstrate that our approach can construct underlying sigmoidal trajectories from individuals' sparse, short-term follow-up data. Furthermore, to determine an optimal methodology, we consider variations to our modelling approach including contrasting linear mixed effects regression to linear regression in Step 1 and investigating different orders of polynomials in Step 2. Cubic order polynomials provided more accurate results, and there were negligible differences between regression methodologies. We use bootstrap confidence intervals to quantify the variability in our estimates of the underlying longitudinal trajectory and apply these methods to data from the Alzheimer's Disease Neuroimaging Initiative to demonstrate their practical use. Copyright © 2017 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app