Add like
Add dislike
Add to saved papers

Childhood growth predicts higher bone mass and greater bone area in early old age: findings among a subgroup of women from the Helsinki Birth Cohort Study.

We examined the associations between childhood growth and bone properties among women at early old age. Early growth in height predicted greater bone area and higher bone mineral mass. However, information on growth did not improve prediction of bone properties beyond that predicted by body size at early old age.

INTRODUCTION: We examined the associations between body size at birth and childhood growth with bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) in early old age.

METHODS: A subgroup of women (n = 178, mean 60.4 years) from the Helsinki Birth Cohort Study, born 1934-1944, participated in dual-energy X-ray absorptiometry (DXA) measurements of the lumbar spine and hip. Height and weight at 0, 2, 7, and 11 years, obtained from health care records, were reconstructed into conditional variables representing growth velocity independent of earlier growth. Weight was adjusted for corresponding height. Linear regression models were adjusted for multiple confounders.

RESULTS: Birth length and growth in height before 7 years of age were positively associated with femoral neck area (p < 0.05) and growth in height at all age periods studied with spine bone area (p < 0.01). Growth in height before the age of 7 years was associated with BMC in the femoral neck (p < 0.01) and birth length and growth in height before the age of 7 years were associated with BMC in the spine (p < 0.05). After entering adult height into the models, nearly all associations disappeared. Weight gain during childhood was not associated with bone area or BMC, and aBMD was not associated with early growth.

CONCLUSIONS: Optimal growth in height in girls is important for obtaining larger skeleton and consequently higher bone mass. However, when predicting bone mineral mass among elderly women, information on early growth does not improve prediction beyond that predicted by current height and weight.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app