Add like
Add dislike
Add to saved papers

Application of the boron center for the design of a covalently bonded closely spaced triad of porphyrin-fullerene mediated by dipyrromethane.

Two novel triads had been designed through covalent bond connection of the boron dipyrromethane (BODIPY), free base porphyrin (H2P) or zinc(ii) porphyrin (ZnP) and N-methyl-2-phenyl-3,4-fulleropyrrolidine (C60 ) mediated by BODIPY. This closely spaced triad arrangement where porphyrin and fullerene are placed apart is anticipated to stabilize charge separation by separating the two radicals from each other. Two model polyads were synthesized with BODIPY and H2P or ZnP to investigate interaction between the two chromophores. Photo-excitation of the BODIPY triggered an efficient singlet energy transfer where the rates are found to be ∼1010 -1011 s-1 . For triads with C60 fast electron transfer was confirmed by the detection of the C60 ˙- signature from femtosecond transient absorption (fs-TA) in ∼0.4-3 ps. The charge recombination is estimated to be in the nanosecond window. This indicates the convenience of this arrangement for stabilizing the charge-separated state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app