Add like
Add dislike
Add to saved papers

Anomalous magnetotransport behaviours in PtSe 2 microflakes.

Platinum diselenide (PtSe2 ) is a newly discovered 2D transition metal dichalcogenide, and is further theoretically identified as a candidate of type-II Dirac semimetals. The electrical transport study of PtSe2 microflakes may provide great potential not only in fundamental physics, but also for future electronic applications. We report the anomalous magnetotransport properties of PtSe2 microflakes. The anisotropic magnetoresistance of PtSe2 microflakes can be normalized by introducing a 3D scaling factor [Formula: see text], where θ is the magnetic field angle with respect to the c axis of the crystal and γ is the mass anisotropic constant of electrons. Additionally, the non-monotonic temperature-dependent magnetoresistance of PtSe2 microflakes is observed both in the perpendicular and in-plane magnetic field orientations. This anomalous magnetotransport behaviour may be ascribed to the novel features of type-II Dirac fermions; however, the exact physical mechanism deserves further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app