Add like
Add dislike
Add to saved papers

Predicting Outcome 12 Months after Mild Traumatic Brain Injury in Patients Admitted to a Neurosurgery Service.

OBJECTIVE: Accurate outcome prediction models for patients with mild traumatic brain injury (MTBI) are key for prognostic assessment and clinical decision-making. Using multivariate machine learning, we tested the unique and added predictive value of (1) magnetic resonance imaging (MRI)-based brain morphometric and volumetric characterization at 4-week postinjury and (2) demographic, preinjury, injury-related, and postinjury variables on 12-month outcomes, including global functioning level, postconcussion symptoms, and mental health in patients with MTBI.

METHODS: A prospective, cohort study of patients (n = 147) aged 16-65 years with a 12-month follow-up. T1-weighted 3 T MRI data were processed in FreeSurfer, yielding accurate cortical reconstructions for surface-based analyses of cortical thickness, area, and volume, and brain segmentation for subcortical and global brain volumes. The 12-month outcome was defined as a composite score using a principal component analysis including the Glasgow Outcome Scale Extended, Rivermead Postconcussion Questionnaire, and Patient Health Questionnaire-9. Using leave-one-out cross-validation and permutation testing, we tested and compared three prediction models: (1) MRI model, (2) clinical model, and (3) MRI and clinical combined.

RESULTS: We found a strong correlation between observed and predicted outcomes for the clinical model (r = 0.55, p < 0.001). The MRI model performed at the chance level (r = 0.03, p = 0.80) and the combined model (r = 0.45, p < 0.002) were slightly weaker than the clinical model. Univariate correlation analyses revealed the strongest association with outcome for postinjury factors of posttraumatic stress (Posttraumatic Symptom Scale-10, r = 0.61), psychological distress (Hospital Anxiety and Depression Scale, r = 0.52), and widespread pain (r = 0.43) assessed at 8 weeks.

CONCLUSION: We found no added predictive value of MRI-based measures of brain cortical morphometry and subcortical volumes over and above demographic and clinical features.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app