Add like
Add dislike
Add to saved papers

p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM.

Science Signaling 2017 April 26
Cellular systems show a wide range of signaling dynamics. Many of these dynamics are highly stereotyped, such as oscillations at a fixed frequency. However, most studies looking at the role of signaling dynamics focus on one or a few cell lines, leaving the diversity of dynamics across tissues or cell lines a largely unexplored question. We focused on the dynamics of the tumor suppressor protein p53, which regulates cell cycle arrest and apoptosis in response to DNA damage. We established live-cell reporters for 12 cancer cell lines expressing wild-type p53 and quantified p53 dynamics in response to double-strand break-inducing DNA damage. In many of the tested cell lines, we found that p53 abundance oscillated in response to ionizing radiation or the DNA-damaging chemotherapeutic neocarzinostatin and that the periodicity of the oscillations was fixed. In other cell lines, p53 abundance dynamically changed in different ways, such as a single broad pulse or a continuous induction. By combining single-cell assays of p53 signaling dynamics, small-molecule screening in live cells, and mathematical modeling, we identified molecules that perturbed p53 dynamics and determined that cell-specific variation in the efficiency of DNA repair and the activity of the kinase ATM (ataxia-telangiectasia mutated) controlled the signaling landscape of p53 dynamics. Because the dynamics of wild-type p53 varied substantially between cell lines, our study highlights the limitation of using one line as a model system and emphasizes the importance of studying the dynamics of other signaling pathways across different cell lines and genetic backgrounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app