Add like
Add dislike
Add to saved papers

Overexpressed Fatty Acid Synthase in Gastrointestinal Stromal Tumors: Targeting a Progression-Associated Metabolic Driver Enhances the Antitumor Effect of Imatinib.

Purpose: In gastrointestinal stromal tumors (GIST), lipid-metabolizing enzymes remain underexplored, including fatty acid synthase (FASN). Experimental Design: Forty GISTs were quantitated for FASN mRNA abundance. FASN immunoexpression was informative in 350 GISTs, including 213 with known KIT/PDGFRA/BRAF genotypes. In imatinib-resistant FASN-overexpressing GIST cells, the roles of overexpressed FASN and FASN-targeting C75 in tumor phenotypes, apoptosis and autophagy, KIT transcription, PI3K/AKT/mTOR activation, and imatinib resistance were analyzed by RNAi or myristoylated-AKT transfection. The therapeutic relevance of dual blockade of FASN and KIT was evaluated in vivo Results: FASN mRNA abundance significantly increased from very low/low-risk to high-risk levels of NCCN guidelines ( P < 0.0001). FASN overexpression was associated with a nongastric location ( P = 0.05), unfavorable genotype ( P = 0.005), and increased risk level ( P < 0.001) and independently predicted shorter disease-free survival ( P < 0.001). In vitro , FASN knockdown inhibited cell growth and migration, inactivated the PI3K/AKT/mTOR pathway, and resensitized resistant GIST cells to imatinib. C75 transcriptionally repressed the KIT promoter, downregulated KIT expression and phosphorylation, induced LC3-II and myristoylated AKT-suppressible activity of caspases 3 and 7, attenuated the PI3K/AKT/mTOR/RPS6/4E-BP1 pathway activation, and exhibited dose-dependent therapeutic additivism with imatinib. Compared with both monotherapies, the C75/imatinib combination more effectively suppressed the growth of xenografts, exhibiting decreased KIT phosphorylation, Ki-67, and phosphorylated PI3K/AKT/mTOR levels and increased TUNEL labeling. Conclusions: We have characterized the prognostic, biological, and therapeutic implications of overexpressed FASN in GISTs. C75 represses KIT transactivation, abrogates PI3K/AKT/mTOR activation, and provides a rationale for dual blockade of KIT and FASN in treating imatinib-resistant GISTs. Clin Cancer Res; 23(16); 4908-18. ©2017 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app