EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

HSCCC separation and enantiomeric distribution of key volatile constituents of Piper claussenianum (Miq.) C. DC. (Piperaceae).

High Speed Countercurrent Chromatography (HSCCC) technique was used for the preparative isolation of the major leishmanicidal compounds from the essential oils of Piper claussenianum species in Brazil. The essential oils from inflorescences of P. claussenianum were analyzed by GC-FID and GC-MS. The enantiomeric ratio of the major constituents of the P. claussenianum essential oils were determined using a Rt-DEXsm chiral capillary column by GC-FID analysis. It was found an enantiomeric excess of (+)-(E)-nerolidol in the leaves, and (+)-linalool and (+)-(E)-nerolidol in the inflorescences essential oil. The major volatile terpenes alcohols were isolated in preparative scale from inflorescences: linalool (320.0 mg) and nerolidol (95.0 mg) in high purity level. The HSCCC, a support-free liquid-liquid partition chromatographic technique, proved to be an effective and useful method for fast isolation and purification of hydrophobic and similarly structured bioactive components from essential oils of Piper species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app