Add like
Add dislike
Add to saved papers

Modified Nucleotides as Substrates of Terminal Deoxynucleotidyl Transferase.

The synthesis of novel modified nucleotides and their incorporation into DNA sequences opens many possibilities to change the chemical properties of oligonucleotides (ONs), and, therefore, broaden the field of practical applications of modified DNA. The chemical synthesis of nucleotide derivatives, including ones bearing thio-, hydrazino-, cyano- and carboxy groups as well as 2-pyridone nucleobase-containing nucleotides was carried out. The prepared compounds were tested as substrates of terminal deoxynucleotidyl transferase (TdT). The nucleotides containing N ⁴-aminocytosine, 4-thiouracil as well as 2-pyridone, 4-chloro- and 4-bromo-2-pyridone as a nucleobase were accepted by TdT, thus allowing enzymatic synthesis of 3'-terminally modified ONs. The successful UV-induced cross-linking of 4-thiouracil-containing ONs to TdT was carried out. Enzymatic post-synthetic 3'-modification of ONs with various photo- and chemically-reactive groups opens novel possibilities for future applications, especially in analysis of the mechanisms of polymerases and the development of photo-labels, sensors, and self-assembling structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app