Add like
Add dislike
Add to saved papers

Buffalo Leukemia Inhibitory Factor Induces Differentiation and Dome-Like Secondary Structures in COS-1 Cells.

This study aimed to understand the molecular characteristics of buffalo leukemia inhibitory factor (BuLIF) and the generation of a stably transfected COS-1_BuLIF cell line for its functional characterization. Cumulus cells, isolated from oocytes, were separated, and total cDNA was prepared. The BuLIF gene was ligated into the cloning vector pJET1.2/blunt and expression vector pAcGFP-N1 which was transfected into COS-1 cells and confirmed by qRT-PCR and Western blot. BuLIF was immunoprecipitated and evaluated through a MTT assay. qRT-PCR of STAT3 was performed. The multiple sequence alignment of BuLIF showed high similarity with sheep (98.77%) and cattle (96.62%) compared with other species. The BuLIF gene has an open reading frame of 609 nucleotides coding for 202 amino acids. BuLIF was integrated into the genome of COS-1 cells and resulted in the formation of dome-like secondary structures which are indicative of its functional role mediated through STAT3 proteins. In conclusion, this cell line is suitable for understanding LIF-mediated biological functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app