Add like
Add dislike
Add to saved papers

Systematic Study on Hydrated Arginine: Clear Theoretical Evidence for the Canonical-to-Zwitterionic Structure Transition.

Extensive ab initio investigations have been performed to characterize the stable conformers of hydrated arginine (Arg-H2 O). Many new low-energy canonical Arg-H2 O conformers were identified and they are more stable than previous results. The large energy differences (more than 5.00 kcal mol-1 ) between the canonical and zwitterionic Arg-H2 O isomers calculated by the composite CBS-QB3 method confirmed the dominance of the zwitterions. The micro effects of corrections of the zero-point energy and the basis set superposition error on the stability of hydrated isomers were carefully examined for the first time. The infrared (IR) spectra were simulated at a recommended temperature and the notable spectral differences enable the unambiguous identification of the different hydrated forms. Further transition state calculations revealed that the canonical Arg-H2 O can be transformed to the zwitterions using the amino group as a bridge. Our study thus shows valuable insights into the hydration of large flexible molecules and provides solid theoretical evidence for the canonical-to-zwitterionic structure transition of hydrated arginine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app