Add like
Add dislike
Add to saved papers

Local Electron Correlation Treatment in Extended Multireference Calculations: Effect of Acceptor-Donor Substituents on the Biradical Character of the Polycyclic Aromatic Hydrocarbon Heptazethrene.

The implementation of a local correlation (LC) treatment of multireference (MR) configuration interaction approaches within the COLUMBUS program system is reported. The LC treatment is based on the weak pairs approximation of Sæbø and Pulay (Ann. Rev. Phys. Chem. 1993, 44, 213) and a geometrical analysis of Walter et al. (Chem. Phys. Lett. 2001, 346, 177). The removal of simultaneous single excitations out of the weak pairs is based on the reference doubly occupied space only, leading to a straightforward program implementation and a conceptual simplicity in terms of well-defined localized orbitals. Reductions of up to an order of magnitude in the configuration space expansion and in computer time for the Davidson diagonalization step are found. The selection of the active and the virtual orbital spaces is not affected by this procedure. This treatment is successfully applied to the singlet biradical heptazethrene and its different acceptor-donor substituents: 4,12-dicyanoheptazethrene, 4,12-diaminoheptazethrene, and 4-amino-12-cyanoheptazethrene. Simultaneous insertion of pairs of donor and acceptor groups increases the biradical character; for push-pull substitution, this effect is significantly smaller. In addition, results obtained from spin-corrected unrestricted density functional theory calculations are supported by our MR calculations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app