Add like
Add dislike
Add to saved papers

Erythromycin Modification That Improves Its Acidic Stability while Optimizing It for Local Drug Delivery.

Antibiotics 2017 April 26
The antibiotic erythromycin has limited efficacy and bioavailability due to its instability and conversion under acidic conditions via an intramolecular dehydration reaction. To improve the stability of erythromycin, several analogs have been developed-such as azithromycin and clarithromycin-which decrease the rate of intramolecular dehydration. We set out to build upon this prior work by developing a conjugate of erythromycin with improved pH stability, bioavailability, and preferential release from a drug delivery system directly at the low pH of an infection site. To develop this new drug conjugate, adamantane-1-carbohydrazide was covalently attached to erythromycin via a pH-degradable hydrazone bond. Since Staphylococcus aureus infection sites are slightly acidic, the hydrazone bond will undergo hydrolysis liberating erythromycin directly at the infection site. The adamantane group provides interaction with the drug delivery system. This local delivery strategy has the potential of reducing off-target and systemic side-effects. This work demonstrates the synthesis of a pH-cleavable, erythromycin conjugate that retains the inherent antimicrobial activity of erythromycin, has an increased hydrophobicity, and improved stability in acidic conditions; thereby enhancing erythromycin's bioavailability while simultaneously reducing its toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app