Add like
Add dislike
Add to saved papers

Concluding the trilogy: The interaction of 2,2'-dihydroxy-benzophenones and their carbonyl N-analogues with human glutathione transferase M1-1 face to face with the P1-1 and A1-1 isoenzymes involved in MDR.

A series of 2,2'-dihydroxybenzophenones and their carbonyl N-analogues were studied as potential inhibitors against human glutathione transferase M1-1 (hGSTM1-1) purified from recombinant E. coli. Their screening revealed an inhibition against hGSTM1-1 within a range of 0-42% (25 μM). The IC50 values for the two stronger ones, 16 and 13, were 53.5 ± 5.6 μΜ and 28.5 ± 2.5 μΜ, respectively. The results were compared with earlier ones for isoenzymes hGSTP1-1 and hGSTA1-1 involved in MDR. All but one bind more strongly to A1-1, than M1-1 and P1-1, the latter being a poor binder. An order of potency A1-1 > > M1-1 >  P1-1 meritted 13, 14 and 16 as the most potent inhibitors with hGSTM1-1. Enzyme kinetics with hGSTM1-1 (Km(CDNB) 213 ± 10 μΜ and Km(GSH) 303 ± 11 μΜ) revealed a competitive modality for 16 (Ki(16)  = 22.3 ± 1.1 μΜ) and a mixed one for 13 versus CDNB (Ki(13)  = 33.3 ± 1.6 μM for the free enzyme and Ki(13) ' = 17.7 ± 1.7 μM for the enzyme-CDNB complex). 5- or 5'-Bromo- or phenyl-substituted (but not in combination) inhibitors, having a H-bonded oxime weakly acidic group of a small volume, are optimal candidates for binding hGSTM1-1. The outcome of the isoenzyme trilogy identified good binder leads for the investigated GSTs involved in MDR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app