Add like
Add dislike
Add to saved papers

High-Temperature Crystal Structure and Chemical Bonding in Thermoelectric Germanium Selenide (GeSe).

The discovery of the ultra-high thermoelectric figure of merit of 2.6 in SnSe has drawn attention to other lead-free IV-VI orthorhombic semiconductors. GeSe has been predicted to possess thermoelectric performances comparable to SnSe. Here, a complete structural study is reported of GeSe with temperature by means of high-resolution synchrotron powder X-ray diffraction. In the orthorhombic phase, the evolution of the bond distances with temperature is shown to deviate significantly with respect to SnSe. Analysis of the chemical bonding within the Quantum Theory of Atoms in Molecules shows that GeSe is ionic with van der Waals interlayer interactions. The signature of the N shell lone pair of Ge is also evident from both the electron density Laplacian and the ELF topologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app