Add like
Add dislike
Add to saved papers

Controllable hydrothermal synthesis of Ni/H-BEA with a hierarchical core-shell structure and highly enhanced biomass hydrodeoxygenation performance.

Nanoscale 2017 May 12
Ni based catalysts are wildly used in catalytic industrial processes due to their low costs and high activities. The design of highly hierarchical core-shell structured Ni/HBEA is achieved using a sustainable, simple, and easy-tunable hydrothermal synthesis approach using combined NH4 Cl and NH3 ·H2 O as a co-precipitation agent at 120 °C. Starting from a single-crystalline hierarchical H+ -exchanged beta polymorph zeolite (HBEA), the adjustment of the precipitate conditions shows that mixed NH4 Cl and NH3 ·H2 O precipitates with proper concentrations are vital in the hydrothermal synthesis for preserving a good crystalline morphology of HBEA and generating abundant highly-dispersed Ni nanoparticles (loading: 41 wt%, 5.9 ± 0.7 nm) encapsulated onto/into the support. NH4 Cl solution without an alkali is unable to generate abundant Ni nanoparticles from Ni salts under the hydrothermal conditions, whereas NH3 ·H2 O seriously damages the pore structure. After studying the in situ changes in infrared, X-ray diffractometry, temperature-programmed reduction, and scanning electron microscopy measurements, as well as variations in the filtrate pH, Si/Al ratios, and solid sample Ni loading, a two-step dissolution-recrystallization process is proposed. The process consists of Si dissolution and no change in elemental Al, and after the dissolved Si(iv) concentrations have promoted Ni phyllosilicate nanosheet solubility, further growth of multilayered Ni phyllosilicate nanosheets commences. The precursor Ni phyllosilicate is changeable between Ni3 Si2 O5 (OH)4 and Ni3 Si4 O10 (OH)2 , because of competition in kinetically-favored and thermodynamically-controlled species caused by different basic agents. The superior catalytic performance is demonstrated in the metal/acid catalyzed biomass derived bulky stearic acid hydrodeoxygenation with 90% octadecane selectivity and a promising rate of 54 g g-1 h-1 , which highly excels the reported rates catalyzed by Ni catalysts. Significant improvements in activity and selectivity are related to the highly dispersive Ni nanoparticles onto/into intra-mesopores of hierarchical HBEA, hence enhance the accessibility of bulky substrates to metal sites and mass transfer capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app