Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Revealing Large-Scale Homogeneity and Trace Impurity Sensitivity of GaAs Nanoscale Membranes.

Nano Letters 2017 May 11
III-V nanostructures have the potential to revolutionize optoelectronics and energy harvesting. For this to become a reality, critical issues such as reproducibility and sensitivity to defects should be resolved. By discussing the optical properties of molecular beam epitaxy (MBE) grown GaAs nanomembranes we highlight several features that bring them closer to large scale applications. Uncapped membranes exhibit a very high optical quality, expressed by extremely narrow neutral exciton emission, allowing the resolution of the more complex excitonic structure for the first time. Capping of the membranes with an AlGaAs shell results in a strong increase of emission intensity but also in a shift and broadening of the exciton peak. This is attributed to the existence of impurities in the shell, beyond MBE-grade quality, showing the high sensitivity of these structures to the presence of impurities. Finally, emission properties are identical at the submicron and submillimeter scale, demonstrating the potential of these structures for large scale applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app